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Abstract
Estimating the vocal tract length (VTL), given the acous-

tic signal of a vowel sound, is an important problem, which is
useful in speaker normalization for vowel recognition, in the in-
version problem and in acoustic-phonetic studies. The common
approach of using the formant data to estimate VTL works for
a neutral vowel approximating a uniform tube. However, for
natural vowels, formant data shift considerably away from the
resonant frequencies of a uniform tube. The proposed method is
motivated from these observations: (a) the frequency of a spec-
tral valley, Fv , depends inversely on VTL; (b) there is much
smaller shift in Fv , across vowels, from the corresponding val-
ley frequency of a uniform tube; (c) Fv can be estimated from
the spectral envelope itself. VTL has been estimated for the Pe-
terson and Barney (33 male and 28 female speakers) and the
TIMIT (326 male and 136 female speakers) databases. When
the estimated Fv is used for normalization, the spread in the
formant data due to gender differences is considerably reduced.
The normalization procedure is vowel and speaker intrinsic.
Additionally, we report applications such as front/back classi-
fication, gender recognition and phonetic feature mapping.
Index Terms: vocal tract length, speaker normalization, spec-
tral valley, front/back classification, gender recognition.

1. Introduction
Many of the existing techniques for the estimation of vocal tract
length (VTL) are based on formant data. For natural vowels,
the formant frequencies shift substantially away from those of
a uniform tube (500, 1500, 2500 Hz etc for a VTL of 17 cm).
For example, for vowel /u/, F2 shifts downwards by about 60%
(from 1500 to 600 Hz) and for vowel /i/, F2 shifts upwards
by about 50% (from 1500 to 2250 Hz). The motivation for
the proposed method is the fact that the frequency of a spec-
tral valley or the valley frequency (a) varies inversely as VTL;
(b) shifts only marginally (by less than 10%) from the corre-
sponding value of a uniform tube (1000 or 2000 Hz etc); and
(c) can be estimated from the spectral envelope itself, without
the need to estimate the formant frequencies. We present some
applications based on the estimated valley frequency. Spectral
valley has been shown to play a significant role in a couple of
our previous studies as well [1, 2].

The formant values of vowel sounds are strongly influenced
by the VTL, which in turn depends on the speaker’s gender and
age [3, 4]. Anatomically, the average VTL of female (child)
speakers is considerably shorter than that of male speakers.
Also, VTL is different for different vowels [5]. Using an x-ray
based study of an adult male speaker, Fant reported a variation
of VTL (16.5 to 19.5 cm) for different vowels.

Given the acoustic signal of a vowel, the estimation of VTL
is a problem that has received considerable attention. For a

uniform tube (neutral vowel), formant frequencies are inversely
proportional to VTL and are regularly spaced (odd integer mul-
tiples). For example, for a uniform tube of VTL = 17 cm, for-
mant frequencies are at 500, 1500, 2500 Hz, etc. with a regular
spacing of 1000 Hz [6]. For natural vowels, the formant data,
especially the first two formant frequencies, F1 and F2, shift
away from the values of a neutral vowel. The challenge is to
estimate VTL, given the formant data of natural vowels. An
early method proposed the use of both the poles and zeros of lip
impedance [7]. This requires the measurement of lip impedance
and is not suitable for the estimation of VTL from a speech sig-
nal. Another approach is to use higher formants, F3, F4, F5 etc.
[8, 9]. This approach is known to give errors of the order of 5 to
15% [10]. Wakita [10] proposes an analysis-by-synthesis pro-
cedure of constructing log area function of different VTLs us-
ing the formant frequencies and bandwidths estimated based on
linear prediction technique, so as to minimize the mean squared
log area under the constraint that the mean log area be zero. An
accuracy of estimation of VTL of 1.6 to 8% has been reported
on a small set of vowels spoken by a few adult male speakers.
This method relies on the accuracy of estimation of formant fre-
quencies and bandwidths, which is a challenging task especially
for female speakers. Surprisingly, the method has a dependence
on the bandwidths, which in turn depend on the acoustic losses
[6] that have nothing to do with the VTL.

A statistical, data-driven approach was proposed by Kirlin
[11]. Lammert and Narayanan [12] proposed a method to esti-
mate VTL based on the deviations of formant data from those
of a uniform tube. For a uniform tube, the n-th formant fre-
quency, Fnu, is an odd integer (2n-1) multiple of the first for-
mant frequency, F1u. Thus Fnu/(2n − 1) of all the formants
would be the same, as an ideal case. Alternately, the mean of
Fn/(2n − 1), n = 1 to m is an estimate of F1u. For nat-
ural vowels, the formant frequencies (Fn) differ significantly
from Fnu, the formant frequencies of a uniform tube of the
same length as that of speaker’s VTL. Hence, Lammert and
Narayanan [12] proposed a weighting function βn in addition
to the factor 1/(2n-1), i.e., βnFn/(2n-1), whose mean value is
an estimate of F1u and detetmined the optimum weights βn us-
ing a data-driven approach. The higher formants get a greater
weightage. This method has been validated for simulated vo-
cal tracts and against the anatomical data of five speakers. To
our knowledge, the estimation of VTL for a large number of
speakers has not been previously reported.

The estimation of VTL is useful in minimizing the differ-
ences in acoustic data arising due to gender and age of speak-
ers, especially for the task of vowel recognition. An alternative
to using VTL is to warp the spectral envelope [13, 14], either
linearly or nonlinearly, to that of a reference template so as to
minimize the overall error in automatic speech recognition. In
addition, the estimation of VTL is required in solving the in-



version problem, namely, the estimation of VT shape from an
acoustic signal [15, 16] and in acoustic-phonetic studies [17].

The paper is organized as follows. In Sec. II., we define
the significant spectral valley and a procedure for determining
its frequency from the short-time spectral envelope of a vowel.
We relate this valley frequency to VTL. Applications such as
speaker normalization, front/back classification of vowels and
gender recognition are presented in Sec.III. In Sec. IV, we sum-
marize the findings and muse over some future directions.

2. The Frequency of Significant Spectral
Valley and the Vocal Tract Length

2.1. Significant Spectral Valley, SSV

Between every pair of formants in the short-time spectral en-
velope of a vowel sound, there exists a spectral valley. The
frequency (Fv) of the deepest or the most significant spectral
valley (SSV) is used to estimate VTL (See Fig.1). Occasion-
ally, when two adjacent formants have large bandwidths, the
two peaks may merge to show a single broad peak and the valley
in-between may not be discernible. However, Fv can be unam-
biguously identified from the spectral envelope itself, without
an explicit knowledge of the formant frequencies. It is expected
that Fv lies in the range of 800 to 2600 Hz and the level of the
SSV is below the mean spectral level. In case there are two
contenders for the SSV, the valley possessing the largest spec-
tral level difference with its immediate neighbouring (either to
the left or right) spectral peaks is taken as the SSV.

2.2. Estimation of VTL for the P and B Formant Data

We use the first three formant frequencies published by Peter-
son and Barney [3], henceforth abbreviated as P&B data [18].
Histograms of F1 and F2 for all the vowels (except the retroflex
vowel /Ç/) for both repetitions of 33 male (594 samples) and 28
female speakers (504 samples) are shown in Fig.2. The mean
and the standard deviation (SD) of F1 for male (female) speak-
ers are 500 Hz and 32% of the mean (586 Hz and 35% of the
mean) and those of F2 are 1430 Hz and 36% of the mean (1700
Hz and 40% of the mean), respectively (see Table 1). In the his-
tograms, we note a multi-modal distribution with a very wide
spread of samples.

In order to estimate the valley frequency, Fv , given only
the formant data, we compute the frequency response. For male
(female) speakers, we use a constant fourth formant at 3500 Hz
(4200 Hz) and compute the frequency response using a sam-
pling frequency of 8000 Hz (10000 Hz). The valley frequency
is determined from the computed frequency response. His-
tograms of Fv for male and female speakers are shown in Fig.
3a. Histograms for both genders show a bi-modal distribution
with sharp peaks. It has been ascertained that the two modes
correspond to the front and back vowels, respectively.

For front vowels of male (female) speakers, Fv happens to
be the first spectral valley, F1v . The mean and S.D. of F1v for
male (female) speakers are about 1153 Hz and 7% of the mean
(1427 Hz and 11% of the mean), respectively. For back vowels
of male (female) speakers, Fv happens to be the second spec-
tral valley, F2v . The mean and S.D. of F2v for male (female)
speakers are about 1795 Hz and 6% of the mean, (2112 Hz and
5.7% of the mean), respectively (see Table 1). This shows that
the spread in the valley frequencies is much lower than that in
the formant frequencies.

The reported ratio of the average physical VTL of female

Figure 1: A typical frequency response of vowel /i/ showing the
locations of the formant frequencies and the significant spectral
valley.

Figure 2: Histograms of F1 and F2 of P&B data for male and
female speakers.

speakers to that of male speakers is about 0.8 [4]. Based on the
mean of Fv , the estimated ratio of average VTLs of female to
male speakers for P&B data is 1153/1427=0.8 for front vowels
and 1795/2112=0.85 for back vowels, which match well with
the published anatomical data.

The expected valley frequency is 1000 Hz (1200 Hz) for a
uniform tube representative of an adult male (female) speaker
with VTL of about 17 cm (14 cm). For front vowels of male
(female) speakers, the mean value of F1v is 1153 Hz (1427 Hz)
implying VTL is shorter than 17 cm (14 cm). For back vowels
of male (female) speakers, the mean value of 0.5F2v is about
900 Hz (1050 Hz), implying that the VTL is longer than 17
cm (14 cm). This deviation from the expected VTL may be
explained as follows.

We postulate that the effective VTL from the acoustic point
of view may differ from the physical VTL from the anatomical
point of view. As per the x-ray data of an adult male Russian
speaker [5], the VTL of vowels /i/ and /e/ is about 16.5 cm. For
front vowels, there is an abrupt increase in the VT area imme-
diately in front of the constriction. It is known that for vowel
/i/, the first three formant frequencies are insensitive to large
changes of mouth area [19]. The radiation of acoustic waves
into free-field may be assumed to begin at the exit of the con-
striction itself, instead of at the lips. Hence, for front vowels, the
acoustic VTL may be assumed to be from the glottis to the exit
of constriction, which is much shorter than the physical VTL.
As per the x-ray data [5], the VTL of vowel /A/ is about 17 cm,
whereas that of /u/ is about 19.5 cm for an adult male speaker.
Hence, the mean VTL of back vowels is greater than 17 cm
(14 cm for female speakers). Further, due to end correction for
the radiation, the acoustic VTL of a back rounded vowel would
be longer than the physical VTL. Some researchers [12] have
suggested an ad-hoc correction in order to match the estimated
acoustic VTL to the physical VTL.



Figure 3: Histogram of Fv for male (solid) and female (dashed) speakers computed using the (a) P&B data (594 male and 504 female
samples); (b) SA1 utterances (978 male and 408 female vowel samples) of the TIMIT database.

2.3. Estimation of VTL for the TIMIT Database

In the case of P&B data, formant frequencies have been mea-
sured over the mid steady part of the vowels in the hVd context.
In order to study the influence of context on the estimation of
Fv , we consider the TIMIT training set of SA1 sentences com-
prising 326 male and 136 female speakers. In the utterance,
”She had your dark suit in greasy wash water all year”, the en-
tire segment of vowels labelled ’iy’, ’aa’ and ’ao’ are analyzed.
A frame-wise linear prediction (LP) analysis of order 18 is per-
formed on the pre-emphasized and windowed frames of 20 ms
duration, at 100 frames per second. The histogram of Fv , de-
termined from the log spectrum of the all-pole model, is shown
in Fig. 3b. The mean values for the TIMIT database (see Table
1) and those of P&B data match very well, thus showing the
consistency of the proposed method.

2.4. Robustness of the VTL Estimate for the P&B Data

White Gaussian random noise is added to the impulse response
of a vowel synthesized using the P&B data to obtain 20 dB
SNR. LP analysis is performed on the noisy signal and Fv is
estimated. A similar experiment is conducted with the addition
of babble noise also. The results for the noisy data, shown in
Table 1, are very similar to those obtained for the clean (P&B)
data. The analysis of telephone quality speech will not be an
issue, since Fv is expected to lie in the range of 800-2600 Hz.

3. Applications of Valley Frequency
3.1. Normalization of P&B Formant Data

The estimated valley frequency, which is inversely related to
the acoustic VTL, serves the purpose of speaker normalization.
If Fv is closer to 1000 rather than 2000 Hz, then it is the first
valley, F1v; else, it is the second valley F2v . Accordingly, we
define the normalization frequency, Vn as,

Vn = 2F1v (1)

OR
Vn = F2v (2)

depending upon which of the valleys happen to be the deepest.
All the formant frequencies are normalized by one and the same
factor as (F1/Vn, F2/Vn). A plot of F2 versus F1 of P&B data
is shown in Fig. 4a. A plot of normalized second formant fre-
quency versus normalized first formant frequency is shown in
Fig. 4b. Here, the dimensionless normalized values are multi-
plied by 2200 for the purpose of graphic comparison with the
plot shown in Fig. 3a. We observe that gender differences are
normalized effectively, especially for front vowels. Since Vn

Figure 4: Normalization of formant data using the frequency of
significant spectral valley. Left: Original raw data of Peterson
and Barney. Right: Formant data normalized using Fn. Male
(blue) and female (red) data overlap and intra-speaker spread
is reduced after the normalization.

is estimated frame-wise for each vowel of each speaker, the
normalization procedure is speaker and vowel intrinsic (self-
normalization) [17].

Graphically, the normalization appears to be as effective
as extrinsic normalization procedures (z-score or S-ratio) [17].
When the P&B data of all male and female speakers are pooled
together, using F1, F2 (in Hz) as the feature vector and Eu-
clidean distance measure, a vowel classification accuracy of
about 67.2% and 75.7% are obtained for the raw data and
normalized formant data, respectively. A formant dependent
normalization procedure gives a better clustering and a higher
vowel classification accuracy [20].

3.2. Front/Back Classification

We propose to make use of Fv to determine if a vowel belongs
to the Front or Back class. The histograms of the front vow-
els of female speakers and the back vowels of male speakers
cross around 1500 Hz (Fig. 3). In other words, the two modes
representing the front and back vowels show a clear separation
around 1500 Hz, both for the P&B data and the SA1 samples
of the TIMIT database. For any other database, the actual fre-
quency to be used (in place of 1500 Hz) can be determined using
a training set, if desired. We define normalized Fv , NFV , as

NFV = (Fv − 1500)/1500 (3)

For front vowels, NFV is zero or negative, since in the his-
togram of Fv , almost all samples of front vowels lie to the left of
1500 Hz. For back vowels, NFV is positive. Using a threshold
of 0 on NFV, we obtain a Front/Back classification accuracy of
98.5% for the P&B data. For the TIMIT database considered in
Sec. 2.3, Front/Back classification accuracy of 96.1% has been
obtained for 7861 frames of front vowels and 19730 frames of
back vowels.



3.3. Gender Recognition

Since Vn is inversely related to VTL, it may be used for gender
recognition. The accuracy of gender recognition is a measure
to assess the performance of the proposed method. The gender
recognition rule is different for front and back vowels. From
Fig. 3a, we note that the histograms for the front (back) vowels
of male and female speakers cross around 1300 Hz (2000 Hz).
For front vowels, if Fv ≤ 1300 Hz, the sample is assigned to
a male speaker; else, to a female speaker. For back vowels, if
Fv ≤ 2000 Hz, the sample is assigned to a male speaker; else,
to a female speaker. Using such a procedure along with the
Front/Back classification as previously described in Sec. 3.2,
we obtain a gender recognition accuracy of 93.7% for the P&B
data. Most errors occur for rounded vowels. If we exclude
rounded vowels, a gender recognition accuracy of 97% is ob-
tained. A lower accuracy might have arisen since gender recog-
nition itself is based on Front/Back classification. Also, there
may be some male (female) speakers with VTL shorter (longer)
than the average VTL of male (female) population. The thresh-
old frequencies of 1300 and 2000 Hz may be fine tuned, if re-
quired, for a new database or a new population.

Using the same thresholds, a gender recognition accuracy
of 83.3% is obtained for the TIMIT database, comprising 326
male and 136 female speakers. This is a decent result, consid-
ering the large number of speakers. The lower accuracy arises
because of (i) significant overlap of the histograms of Fv (Fig.
2b) arising due to the contextual influence and (ii) the depen-
dence on the Front/Back classification accuracy. A previous
study on VTL estimation using higher formants reports an ac-
curacy in the range of 25 to 37% depending on the gender and
context [9]. A vowel-dependent gender recognition accuracy
of 98.2% has been reported [21] using the second formant fre-
quency for the P&B data. However, this study is not related to
the estimation of VTL.

3.4. Normalized Phonetic Feature Space

Generally, the acoustic signal of a vowel is represented in F2

versus F1 space, as in Fig. 4a. We propose an alternative
representation of vowels corresponding to the phonetic feature
space of High/Low versus Front/Back. Assuming the VTL as
17 cm (for an adult male speaker), we note that F1<500 Hz for
high vowels /i/ and /u/ and F1>500 Hz for low vowel /A/ and
F2>1500 Hz for front vowel /i/, whereas F2<1500 Hz for back
vowels /A/ and /u/. Generalizing this observation, we postulate
that F1<F1u for high vowels and vice-versa; F2>F2u or 3F1u

for front vowels and vice-versa. Further, note that F1u=0.5F1v

or 0.25F2v . We define normalized, dimensionless variables rep-
resentative of High/Low and Front/Back phonetic features as

HL = 1− F1/F1u = 1− F1/(0.5F1v) = 1− F1/(0.25F2v)
(4)

FB = 1−F2/3F1u = 1−F2/(1.5F1v) = 1−F2/(0.75F2v)
(5)

A plot of HL versus FB for the P&B formant data is shown
in Fig. 5. This resembles the rotated F2 versus F1 space used
by phoneticians and linguists [17]. Since Fv is measured for
each vowel and each speaker, the samples of male and female
speakers are normalized. The three corner vowels occupy rela-
tively the correct positions in the phonetic feature space. Vowel
/i/ occupies the top left corner corresponding to high and front
phonetic features. Vowel /A/ occupies the bottom central posi-
tion corresponding to low and back phonetic features. Vowel /u/
occupies the top right corner corresponding to high and back

Figure 5: Formant data of Peterson and Barney mapped to a
normalized phonetic feature space.

phonetic features. There seems to a bias in the estimated FB
value and FB>0.1 may have to be considered as ’Back’ based
on the distribution seen for vowel /ae/.

Table 1: The mean value in Hz and the standard deviation (SD)
as a percentage of the mean for various data sets. P&B: Pe-
terson and Barney data. SA1: The TIMIT database. WN-20
(WN-0): White noise, SNR=20 (0) dB. BN-20 (BN-0): Babble
Noise, SNR=20 (0) dB.

Male Female

Data Mean SD(%) Mean SD(%)

F1 − P&B 500 32.0 586 35.0

F1v− P&B 1153 7.0 1427 11.0
F1v− SA1 1109 6.7 1342 13.2

F1v− WN-20 1180 15.0 1436 14.2
F1v− WN-0 1376 24.5 1614 20.7
F1v− BN-20 1241 12.5 1513 13.0
F1v− BN-0 1512 18.4 1760 13.6

F2 − P&B 1430 36.0 1700 40.0

F2v − P&B 1795 6.0 2112 5.7
F2v − SA1 1805 13.2 2083 12.4
F2v− WN-20 1735 8.0 2034 7.2
F2v− WN- 0 1671 12.1 1963 12.8
F2v− BN-20 1800 6.7 2116 6.3
F2v− BN- 0 1899 8.5 2299 7.89

4. Conclusion

We have proposed a method for estimating VTL using the fre-
quency of significant spectral valley instead of the formant fre-
quencies. The proposed method predicts distinctly different
VTLs for the front and back vowels, a finding difficult to in-
fer using formant based methods. Also, we have argued that the
acoustic VTL is different from the anatomical VTL. For the for-
mant data published by Peterson and Barney, we have demon-
strated the effectiveness of the speaker normalization. Since
VTL is estimated for each frame of a vowel sample, the nor-
malization procedure is speaker as well as vowel intrinsic. We
have applied the method for Front/Back classification, gender
recognition and a procedure to map formant data into a normal-
ized phonetic feature space.

Future work involves validating the proposed method and
applying the method on a larger database. The frequency of the
significant spectral valley may be used as an anchor for spectral
warping procedures. Methods proposed in the literature for esti-
mating VTL based on the formant data can as well be extended
to the estimation of VTL using the frequency of spectral valley.
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