Abstract: A multi-font, multi-size Optical Character Recognizer (OCR) of Tamil Script is developed. The input image to the system is binary and is assumed to contain only text. The skew angle of the document is estimated using a combination of Hough transform and Principal Component Analysis. A multi-rate-signal-processing based algorithm is devised to achieve distortion-free rotation of the binary image during skew correction. Text segmentation is noise-tolerant. The statistics of the line height and the character gap are used to segment the text lines and the words. The images of the words are subjected to morphological closing followed by connected component-based segmentation to separate out the individual symbols. Each segmented symbol is resized to a pre-fixed size and thinned before it is fed to the classifier. A three-level, tree-structured classifier for Tamil script is designed. The net classification accuracy is 99.01%.

METHODOLOGY

OCR involves skew detection and correction followed by character segmentation and recognition of segmented symbols. Operations involved in each step are elaborated below.

Skew Correction

The input binary image is first corrected for skew. We have developed a precise skew detection algorithm [1], which estimates the skew angle in two steps. A coarse estimate of the skew is obtained through interim line detection using Hough Transform [2]. The interim lines are the lines that bisect the backgrounds in between the text lines. The coarse estimate is used to segment the text lines, which are superposed on each other and the direction of the principal axis [3] of the resulting image with the larger variance is taken as the fine skew direction. The accuracy of the final estimate is ± 0.06°. A multi-rate-signal-processing based algorithm is devised to achieve distortion-free rotation of the binary image during skew correction [4].

Text Segmentation

The text lines are segmented using the horizontal projection profile of the document image [5]. Subsequently, the words are segmented using the vertical projection profile. The statistics of line-height and symbol-gap are extracted first. During text line segmentation, the average line height is used to split those pairs of text lines, which cannot be segmented separately due to noise. Since some of the Tamil characters are made up of 2 or 3 disconnected symbols, we use the term symbol to denote each connected component, as different from a character. The symbol-gap statistics is used to distinguish a word boundary from a symbol boundary. From the segmented words, individual symbols are separated by successive application of the morphological closing and connected component-based segmentation algorithm [2]. Morphological closing helps in filling the gaps in the broken characters. Connected Component Analysis is useful when the symbols cannot be segmented using vertical projection profile only.
The case for a tree structured classifier for Tamil characters

The segmented symbols are fed to the classifier for recognition. We use a classification strategy, which first identifies the individual symbols, and in a subsequent stage, combines the appropriate number of successive symbols to detect the character. It is desirable to divide the set of 154 different symbols into a few smaller clusters, so that the search space while recognition is smaller, resulting in lesser recognition time and smaller probability of confusion. The above objective is accomplished by designing a three level, tree structured classifier to classify Tamil script symbols.

First Level Classification based on Height

The text lines of any Tamil text will have three different segments. We name them Segment-1, Segment-2, and Segment-3, as shown in Fig.1. Since the segments occupied by a particular symbol are fixed and remain invariant from font to font, a symbol can be associated with one of the four different classes depending upon its occupancy of these segments. Symbols occupying segment-2 only are labeled as Class-0 symbols. Those occupying segment-2 and segment-1 are termed as Class-1 symbols. Those occupying segment-2 and segment-3 are named as Class-2 symbols. Symbols occupying all of them are called as Class-3 symbols. Almost all the symbols in Tamil occupy the segment-2 and about 60% of the symbols belong to Class-0. Thus, the horizontal projection value of any row in the segment-2 is large compared to that of a row of the segments 1 or 3. The sharp rise and the fall in the horizontal projection profile \(p[n] \) indicate the transition from segment-1 to segment-2 and the transition from segment-2 to segment-3 respectively (Refer Fig.2.). These correspond to the sharp maximum and the minimum in its first difference \(q[n] \), which is given by

\[
q[n] = p[n] - p[n-1], \quad n > 0
\]

\[
p[0] = q[0].
\]

The line-boundary between the segments 1 & 2 denoted by Line_1 is given by the value of \(n \) for which \(q[n] \) is maximum in the upper half of the text line. Similarly, the boundary between the
segments 2 & 3 denoted by Line 2 is given by the value of n for which q[n] is minimum in the lower half of the text line. An unknown symbol segmented from the text line under consideration can now be classified accordingly.

Second Level Clustering based on matra/extensions

Symbols of class-1 and class-3 have their extensions in segment-1. The set of symbols in class-1 is divided into three groups (Groups 1, 2, and 3) based on their extensions in segment-1 (Refer Fig. 3.). Similarly, Class-2 symbols are clustered into five groups (Groups 4, 5, 6, 7, and 8) based on their extension in the segment-3 (Refer Fig.4.). No further script dependent clustering is performed among the Class-0 and Class–3 symbols.

![Figure 3. Illustration of second level classification in Class-1.](image)

![Figure 4. Illustration of second level classification in Class-2.](image)

The rectangle containing the thinned symbol is found out. The portion of the rectangle captured in the segment-1 or 3 (as applicable) is resized to a 30×30 image. This image is thinned and divided into four 15×15 blocks. Second moments [2] are calculated from each block to obtain...

The tree structure of the classifier is shown in Fig.5.

![Tree structure of the classifier](image)

Figure 5. Tree structure of the classifier.

![Example of class-1 normalization](image)

Fig. 6. Example of class-1 normalization
(a) Class-1 symbol (b) Normalized symbol (c) segment-1 extension separated.

![Example of class-2 normalization](image)

Fig. 7. Example of class-2 normalization
(a) Class-2 symbol (b) Normalized Symbol (c) segment-2 extension separated.

Recognition at the third level

In the third level, feature-based recognition is performed. The symbols are to be normalized first to a predefined size to make it possible to compare them with those in the training set. The normalization strategy varies from group to group. First, the rectangle containing the symbol is cropped. The cropped rectangle is interpolated to a size of 45×60 and thinned if the symbol belongs to Class-0. For a symbol belonging to class-1, 2 or 3, the portion of the cropped rectangle captured in the segment-1 or 3 is normalized to a rectangle of height 10. The portion of the rectangle captured in the segment-2 is normalized to a rectangle of height 50, keeping the same normalized width. These individual images are concatenated back and thinned to get the normalized symbol (Refer Figs. 6 & 7). The normalized width is 45 for group-1. It is 60 for the groups 3, 4, 6, 7, 8, 9. The width for groups 2 and 5 is 75. This normalization strategy helps to bring in the font independence in the OCR. Geometric moment features are extracted from the normalized symbols. The normalized symbols are split into 15×15 non-overlapping blocks and from each block, second order geometric moments are calculated. Nearest neighbour classifier
using Euclidean distance is employed to recognize the symbols. A symbol is rejected if the distance to its nearest neighbour is larger than a predefined threshold. The value of the threshold is taken as 30.

Classification Results

Training set is generated form the symbols extracted from regular Tamil texts appearing in books. The algorithm is tested on some other pages of the same texts. Some of the symbols are very rare in regular Tamil texts. These symbols belong to Group-3, Group-5 and Group-9. Computer generated font is used for both the training and the test set for these symbols. The summary of the results is given in the following table. The classification accuracy is calculated based on the number of symbols correctly recognized.

<table>
<thead>
<tr>
<th>Class</th>
<th>No of test patterns</th>
<th>No of training patterns</th>
<th>Percentage Recognition Accuracy</th>
<th>Percentage Rejection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class-0</td>
<td>1832</td>
<td>69</td>
<td>99.4</td>
<td>0.3</td>
</tr>
<tr>
<td>Class-1</td>
<td>423</td>
<td>45</td>
<td>98.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Class-2</td>
<td>983</td>
<td>69</td>
<td>99.3</td>
<td>0.4</td>
</tr>
<tr>
<td>Class-3</td>
<td>122</td>
<td>21</td>
<td>95.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

Net Classification accuracy is 99.01%.

References